Polg2 is essential for mammalian embryogenesis and is required for mtDNA maintenance.
نویسندگان
چکیده
Mammalian mitochondrial DNA (mtDNA) is replicated by the heterotrimeric Pol γ comprised of a single catalytic subunit, encoded by Polg, and a homodimeric accessory subunit encoded by the Polg2 gene. While the catalytic subunit has been shown to be essential for embryo development, genetic data regarding the accessory subunit are lacking in mammalian systems. Here, we describe the generation of heterozygous (Polg2(+/-)) and homozygous (Polg2(-/-)) knockout (KO) mice. Polg2(+/-) mice are haplosufficient and develop normally with no discernable difference in mitochondrial function through 2 years of age. In contrast, the Polg2(-/-) is embryonic lethal at day 8.0-8.5 p.c. with concomitant loss of mtDNA and mtDNA gene products. Electron microscopy shows severe ultra-structural defects and loss of organized cristae in mitochondria of the Polg2(-/-) embryos as well as an increase in lipid accumulation compared with both wild-type (WT) and Polg2(+/-) embryos. Our data indicate that Polg2 function is critical to mammalian embryogenesis and mtDNA replication, and that a single copy of Polg2 is sufficient to sustain life.
منابع مشابه
Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملBiochemical analysis of human POLG2 variants associated with mitochondrial disease.
Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG...
متن کاملMitochondrial DNA replication during differentiation of murine embryonic stem cells.
Oxidative phosphorylation (OXPHOS), the intracellular process that generates the majority of the ATP of a cell through the electron-transfer chain, is highly dependent on proteins encoded by the mitochondrial genome (mtDNA). MtDNA replication is regulated by the nuclear-encoded mitochondrial transcription factor A (TFAM) and the mitochondrial-specific DNA polymerase gamma, which consists of a c...
متن کاملMitochondrial DNA polymerase gamma is essential for mammalian embryogenesis.
Mitochondrial DNA (mtDNA) polymerase gamma (Polg) is a heterodimeric enzyme containing a Pol I-like catalytic core (PolgA) and an accessory subunit. Mutations in POLGA, affecting the stability of mtDNA, have been identified in several human pathologies such as progressive external ophthalmoplegia and Alpers' syndrome. Extensive literature shows mitochondrial toxicity effects nucleoside analogue...
متن کاملPOLG2 disease variants: analyses reveal a dominant negative heterodimer, altered mitochondrial localization and impaired respiratory capacity.
Human mitochondrial DNA (mtDNA) is replicated and repaired by the mtDNA polymerase gamma, polγ. Polγ is composed of three subunits encoded by two nuclear genes: (1) POLG codes for the 140-kilodalton (kDa) catalytic subunit, p140 and (2) POLG2 encodes the ∼110-kDa homodimeric accessory subunit, p55. Specific mutations are associated with POLG- or POLG2-related disorders. During DNA replication t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2013